Three searches for squarks and gluinos with the CMS detector using kinematic variables

Edward Laird - Princeton University On behalf of the CMS Collaboration

19th International Conference on Supersymmetry and Unification of Fundamental Interactions Fermilab, August 28 - September 2, 2011

Introduction

- ► CMS has a broad range of searches for events with escaping undetected particles from, e.g., SUSY with R-parity conservation. They are organized by numbers of leptons and photons required.
- ▶ Described here are three different searches which use primarily all-hadronic events: $\alpha_{\rm T}$, M_{T2} , Razor. Shared features include strong suppression of multi-jet backgrounds and variables related to mass scales. Substantial differences include triggers, signal selection, and background estimation methods.
- ▶ Results from analyzing 1.1/fb (35/pb) of data are presented and interpreted in both the CMSSM and "simplified models".

The CMS Detector

- ▶ Excellent performance and live-time in 2011.
- ▶ SUSY searches exercise every sub-detector!

The search using M_{T2}

▶ M_{T2} is a generalization of transverse mass to a system with two semi-invisibly decaying particles [Lester, Summers, 1999]:

$$M_{T2}(m_\chi) = \min_{
ho_T^{\chi(1)} +
ho_T^{\chi(2)} =
ho_T^{miss}} \left[\max \left(m_T^{(1)}, m_T^{(2)}
ight)
ight]$$

- ▶ Each m_T is the transverse mass of a sparticle decaying to a visible system and LSP; for the correct value of m_χ , M_{T2} has an endpoint at the parent sparticle mass.
- Assuming zero masses and no ISR or UTM, M_{T2} assumes a simple form: $(M_{T2})^2 = 2p_T^{vis(1)}p_T^{vis(2)}(1+cos\phi_{12}) \Longrightarrow$ apparent that back-to-back visible systems have low M_{T2}
- ► For an *n*-jet system, two "pseudo-jets" are formed from reconstructed event hemispheres.

M_{T2} search: trigger, objects, vetoes

Trigger $H_T > 550 \text{ GeV}$

MET Built from reconstructed particles.

Jets Anti- k_T , R=0.5; built from reconstructed particles; $|\eta|<2.4,\ p_T>20\ {
m GeV}.$

Leptons Veto events with an iso. muon or electron with $p_T > 10$ GeV.

Noise Veto events with a jet which fails loose ID requirements.

Further:

- ▶ |MHT MET| < 70 GeV, to protect against several low- p_T jets pointing in the same direction.
- ▶ $\min_j \Delta \phi(\text{jet}, MET) > 0.3$ to protect against severely mis-mismeasured jets.

M_{T2} search: two signal selections

"High M_{T2} " selection

- ▶ $H_T > 600 \text{ GeV}$
- $ightharpoonup N_{\text{jets}} \ge 3$
- Leading two jets have $p_T > 100 \text{ GeV}$
- ► $M_{T2} > 400 \text{ GeV}$
- Targets models with heavy sparticles.

"Low M_{T2} " selection

- ▶ $H_{\rm T} > 650 \,\, {\rm GeV}$
- ▶ $N_{\text{jets}} \ge 4$; $N_{\text{b-jets}} \ge 1$
- Leading (second) jet has $p_T > 150(100)$ GeV
- $M_{T2} > 150 \text{ GeV}$
- ► Targets models with large m_{squark} and small m_{gluino} .

M_{T2} search: observed distributions

[numbers are in GeV]

- ▶ signal region: $400 < M_{T2}$
- control region: $200 < M_{T2} < 400$

- ▶ signal region: $150 < M_{T2}$
- control region: $100 < M_{T2} < 150$

M_{T2} search: yields and background estimation

- ▶ The QCD background was estimated from a control region using the form $r(M_{T2}) = \frac{N(\Delta\phi_{min} \geq 0.3)}{N(\Delta\phi_{min} \leq 0.2)} = \exp(a b \cdot M_{T2}) + c$, validated in MC, tested with variations of fit range and cut values, emulated catastrophic jet loss. Contribution found to be negligible for both analyses (< 1 event).
- ▶ W $\rightarrow \mu\nu$ and W \rightarrow e ν samples were selected by inverting the lepton vetoes in the M_{T2} control region and used to predict:
 - ightharpoonup W and $t\bar{t}$ backgrounds from unobs. leptons (using loss probs.)
 - ightharpoonup Z ightharpoonup background (using ${
 m tar t}$ subtraction; W-to-Z correction)
- Results (1.1/fb):

search	N _{obs}	data-driven pred.	MC pred.
High M_{T2}	12	$12.6\pm1.3(extsf{stat.})\pm3.5(extsf{syst.})$	11.0
Low M_{T2}	19	$10.6\pm1.9(ext{stat.})\pm4.8(ext{syst.})$	15.0

M_{T2} search: interpretation in the CMSSM

▶ The sensitivities complement each other.

M_{T2} search: interpretation in a simplified model

Two SUSY particles, b-enriched:

The search using Razor variables

- ▶ The "Razor" variables R, M_R were designed to discover and characterize events with heavy pair-produced particles [Rogan, arXiv:1006.2727].
- Reconstructed objects are grouped into two hemispheres with 3-momenta \vec{p} , \vec{q} (\vec{M} denotes MET).
- \blacktriangleright M_R peaks at M_{Λ} , whereas M_T^R has a kinematic edge at M_{Λ} .
- $ightharpoonup R \equiv \frac{M_T^R}{M_D}$ provides strong rejection of QCD multi-jet events:

$$\begin{split} M_R &= 2 \sqrt{\frac{(|\vec{p}|q_z - |\vec{q}|p_z)^2}{(p_z - q_z)^2 - (|\vec{p}| - |\vec{q}|)^2}} \\ M_T^R &= \sqrt{\frac{|\vec{M}|(|\vec{p}| + |\vec{q}|) - \vec{M} \cdot (\vec{p} + \vec{q})}{2}} \\ M_\Delta &= \frac{m_{\tilde{q}}^2 - m_{\tilde{\chi}_1^0}^2}{2m_z} \end{split}$$

Razor search: method and 35/pb results

- \triangleright Exponent of M_R distribution is measured as function of R cut
- ► Hadronic box with > 2 jets and R > 0.5 has signal region at $M_R > 500 \text{ GeV}$
- Muon and electron boxes:
 - provide EWK background prediction (using low M_R)
 - provide search sensitivity (at high M_R)
- Excellent sensitivity at 35/pbstay tuned for 2011 results!

The search using $\alpha_{\rm T}$

- Inspired by the variable α [Randall, Tucker-Smith, 2008]
- ▶ For a di-jet system, $\alpha_{\rm T} \equiv \frac{E_{\rm T}^{\rm jet2}}{M_{\rm T}}$.
- ▶ QCD expectation = 0.5
- \blacktriangleright Jet mis-measurements cause $\alpha_{\rm T} < 0.5$
- ► Events with genuine MET can have smaller M_T , and hence

- For an *n*-jet system, form two "pseudo-jets" defined by balance in pseudo-jet H_T ≡ ∑_i E_T

$\alpha_{\rm T}$ search: trigger, objects, vetoes

Trigger $H_T > 250$ GeV and MHT > 90 GeV.

MET Built from calorimeter towers.

Jets Anti- k_T , R=0.5; built from calorimeter towers; $|\eta|<3.0,~p_T>50~{\rm GeV}.$ The thresholds are scaled at low H_T to preserve phase space:

H _⊤ range	jet <i>p</i> _T threshold	leading 2 jets p_T threshold
$275 < H_{T} < 325$	36.7	73.3
$325 < H_{T} < 375$	43.3	86.7
375 < H _T	50.0	100.0

Leptons Veto events with an iso. muon or electron with $p_T > 10$ GeV.

Photons Veto events with an iso. photon with $p_T > 25$ GeV.

Forward Veto events with a jet with $|\eta| > 3.0$.

Noise Veto events with a jet which fails loose ID requirements.

$\alpha_{\rm T}$ search: hadronic (signal) selection

- $ightharpoonup H_T > 275 \text{ GeV (where trigger becomes fully efficient)}$
- N_{iets} ≥ 2
- ▶ Leading jet has $|\eta|$ < 2.5.
- ▶ $\alpha_{\rm T} > 0.55$
- ▶ MHT/MET < 1.25, to protect against several low- p_T jets pointing in the same direction.
- $ho \Delta \phi^* \equiv \min_j \Delta \phi({
 m jet}, {
 m MHT computed w/o the jet}) > 0.5$ or $\min \Delta R({
 m jet}^*, {
 m insensitive detector region}) > 0.3$ to protect against severely mis-mismeasured jets due to instrumental inefficiency.

$\alpha_{\rm T}$ search: some distributions

- ▶ Applied cuts: $H_T > 375 \text{ GeV}$, MHT > 100 GeV, MHT/MET < 1.25, where the trigger is fully efficient.
- Note: MC is shown simply for guidance; yields not used in the analysis. LM4 and LM6 are benchmark points in the CMSSM.

$\alpha_{\rm T}$ search: background estimation

- ► All-Hadronic (signal) sample, already described
- ▶ Photon + jets sample, used to estimate $Z \rightarrow \nu \bar{\nu}$ background
- ▶ Muon + jets sample, used to estimate tt+W background
- ▶ QCD-dominated all-Hadronic sample (invert α_T cut) used to model H_T dependence

MC used only for ratios of kinematically similar processes

$\alpha_{\rm T}$ search: evolution in $H_{\rm T}$ of yield ratio

- $ho R_{\alpha_{
 m T}} \equiv rac{N_{\alpha_{
 m T}} > 0.55}{N_{\alpha_{
 m T}} < 0.55}$. Left: observed values and fit result.
- ➤ The contribution from EWK backgrounds is modeled as flat, as tested in MC (right).
- ▶ A possible contribution from QCD is modeled as exponentially falling, as tested with relaxed cuts (to greatly enrich QCD background). Fit contribution compatible with zero.
- A signal contribution is expected to rise.

$\alpha_{\rm T}$ search: observations and SM-fit in control samples

- ➤ The SM yields result from the simultaneous fit to the hadronic (signal) sample and these control samples.
- ► The control sample yields are connected via MC ratios to the background yields in the hadronic sample [O(30%) sys. unc.].

$\alpha_{\rm T}$ search: observations and SM-fit in hadronic sample

➤ The background model describes the data over three orders of magnitude in yield, from near the trigger threshold to O(1 TeV) of visible transverse energy.

$\alpha_{\rm T}$ search: interpretation in the CMSSM

$\alpha_{\rm T}$ search: interpretation in simplified models

Two models, each with only two SUSY particles:

Summary

- The outstanding performance of the LHC and CMS has enabled many complementary searches for events with undetected escaping particles.
- Presented are three searches which focus on all-hadronic events.
- The observed event yields are consistent with SM expectations.
- ▶ In the CMSSM slice considered, equal squark and gluino masses of 1.1 TeV are excluded at 95% C.L.
- Interpretation in simplified models is well underway.

Where is SUSY hiding?